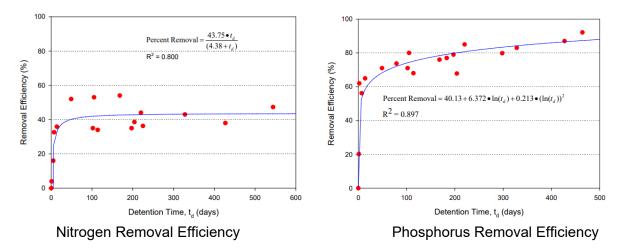


Revised March 12, 2021

Via: Electronic Mail

City of Stuart Planning Department 121 SW Flagler Avenue Stuart, FL 34994


Re: Costco – Kanner PUD City of Stuart LDC 5.05.02(i) Tree Replacement – Innovative Stormwater Treatment

To Whom it May Concern:

Please find below and enclosed an analysis for the above referenced PUD in accordance with City of Stuart Land Development Code (LDC). The applicant seeks approval of the proposed tree replacement fund credit based on the PUD's stormwater management system removal efficiency of nitrogen and phosphorus per Section 5.05.02(i).

The proposed PUD will convert the existing property from a ruderal upland pine and wet flatwood land coverage to a mixed-use development. The most practical type of stormwater system to serve a development of this size is a wet detention lake system. Lakes provide the required treatment and attenuation per regulations set forth by the City of Stuart, SFWMD, and FDOT while also providing the developer a cost-efficient means of generating fill for their project.

Per the LDC, the City's minimum removal efficiency to qualify for tree replacement credit is 81% for both nitrogen and phosphorus. While wet detention lakes can achieve upwards of 90% removal of phosphorus, the maximum removal efficiency of nitrogen is approximately 45% (Evaluation of Current Stormwater Design Criteria within the State of Florida, Harper, 2007).

As such, the developer is proposing to integrate additional dry retention ponds, a bio-detention shelf, and littoral zone plantings into the stormwater management system serving the PUD. These measures will allow for a higher removal efficiency of both nitrogen and phosphorus.

Please see the enclosed BMP Trains calculations for proposed nutrient removal efficiency. Calculations are based on preliminary engineering of the stormwater management system. The final removal efficiencies will be determined at time of final construction level plan design. The wet detention permanent pool volumes are based on an anoxic depth of 12' below control (not to the maximum depth of 25').

Provided Nitrogen Removal = 81% Provided Phosphorus Removal = 90%

Tree Replacement Credit:

As a result of constructing additional dry retention ponds the developer is foregoing the opportunity to serve the entire development with wet detention lakes. This will result in additional fill costs to the project that would otherwise be offset by excavating lakes of a total equivalent footprint. Below is a cost breakdown of the result fill costs.

Potential Wet Detention Lake Excavation Volume to be Offset*:

Total Loss of Excavation Volume = 31,606 cuyds

*Potential excavation depth and volume has been calculated assuming a typical wet detention lake section that is consistent with the lakes to be constructed for the project. Loss of potential excavation is assumed to bottom of the proposed dry retention ponds and bio-detention shelf as compared to a lake of equivalent net size. Maximum potential lake depth is assumed to be the same as the proposed lakes at 25' deep. Dry pond bottoms are assumed to start 1' above the lake control elevation. See enclosed Lake Excavation Exhibit included in this submittal.

Cost of Fill =\$10.00/cuyd = \$10.00/cuyd x 31,606 cuyds = **\$316,060.00**

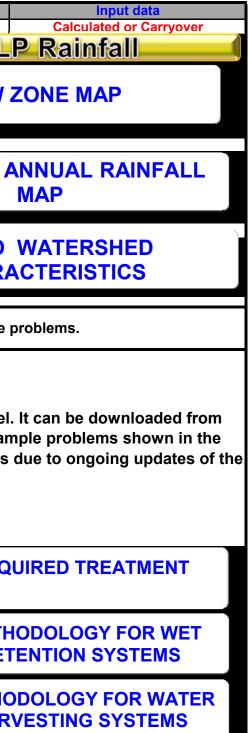
Percentage of Nitrate and Phosphate Loading Reduction from Stormwater	Maximum Pollutant Removal Factor for Construction Value of Additional Stormwater Treatment ^a
81% to 85%	1.25
86% to 89%	1.5
90%+	2.0

Table 2: Credit for Providing Additional Nitrate and Phosphate Removal

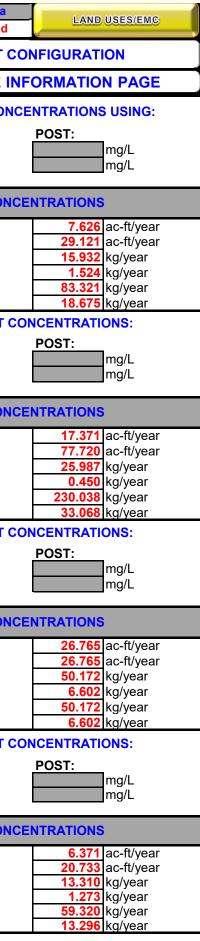
Per the City of Stuart LDC:

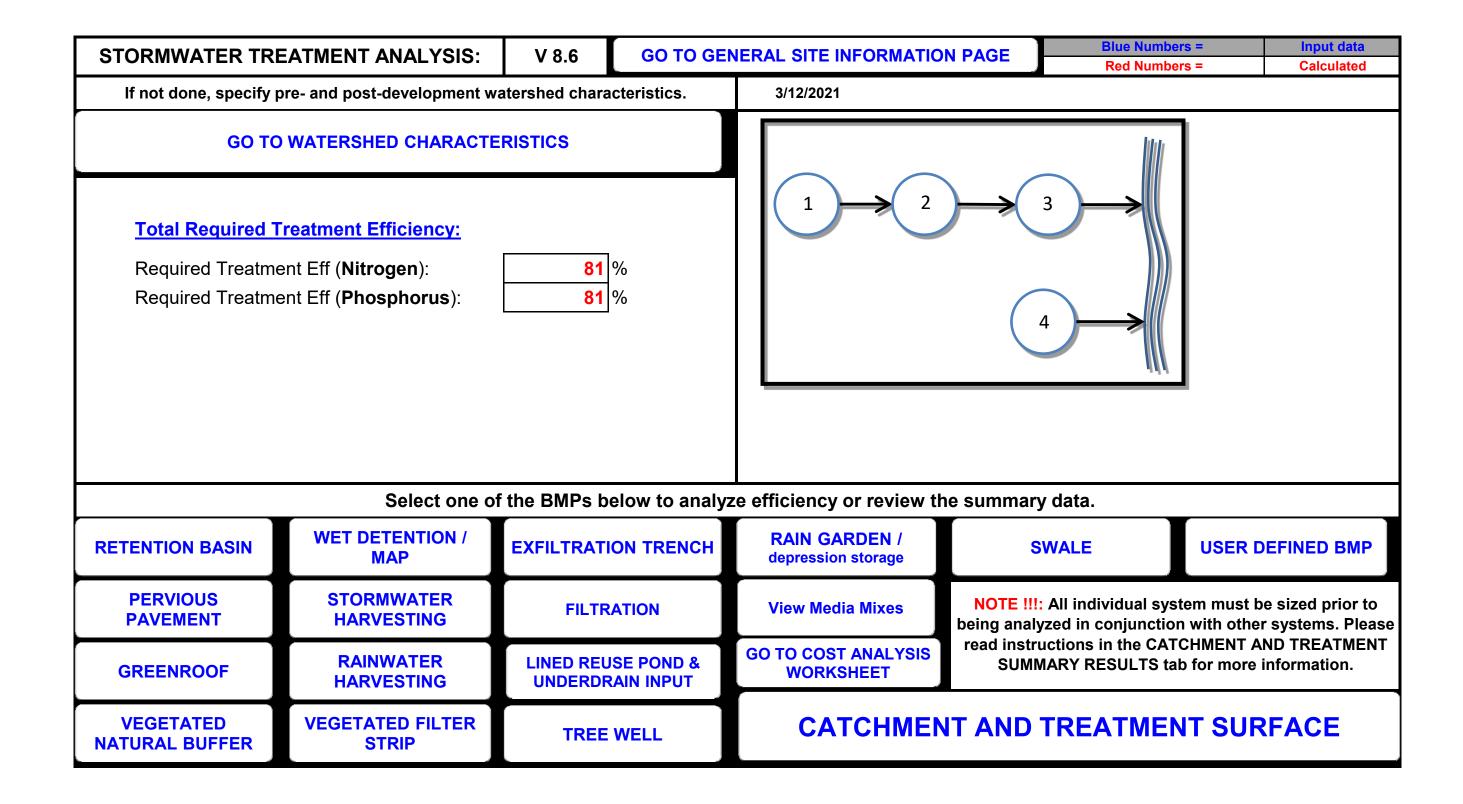
To account for varying treatment efficiencies in the proposed system the tree replacement credit calculations will assume a proportionate cost share for nitrogen and phosphorus removal that is equal; \$197,537.50 multiplied by the allowable credit. As such:

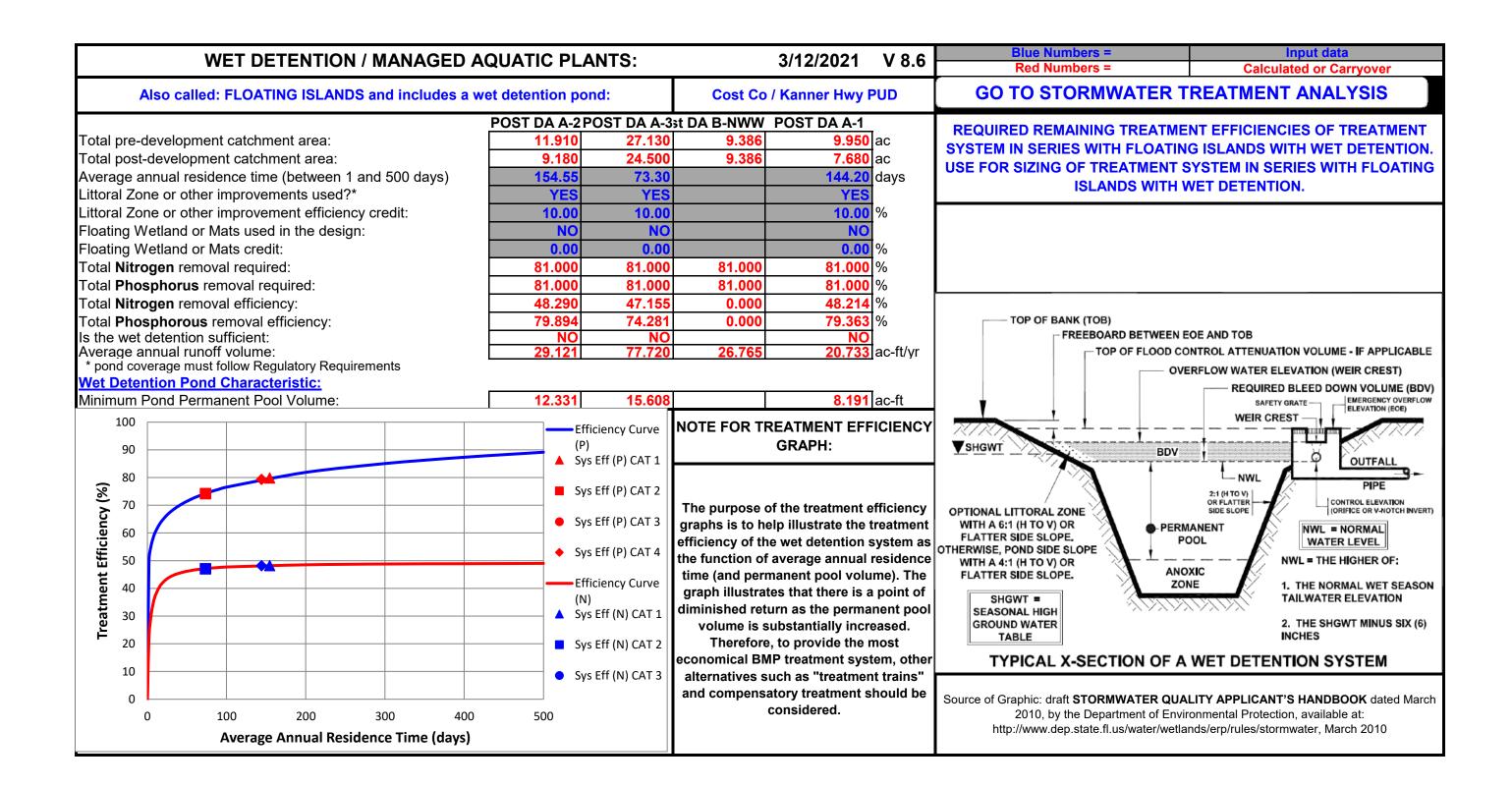
81% Nitrogen Removal Credit = \$197,537.50 x 1.25 = \$197,537.50 90% Phosphorus Removal Credit = \$197,537.50 x 2.0 = \$316,060.00 Total Credit for Providing Nutrient Removal = \$513,597.50 We feel this analysis and the enclosed calculations provide sufficient support for the above tree removal credit to offset a portion of the overall required tree replacement fund. Should you have any questions or comments do not hesitate to contact our office.

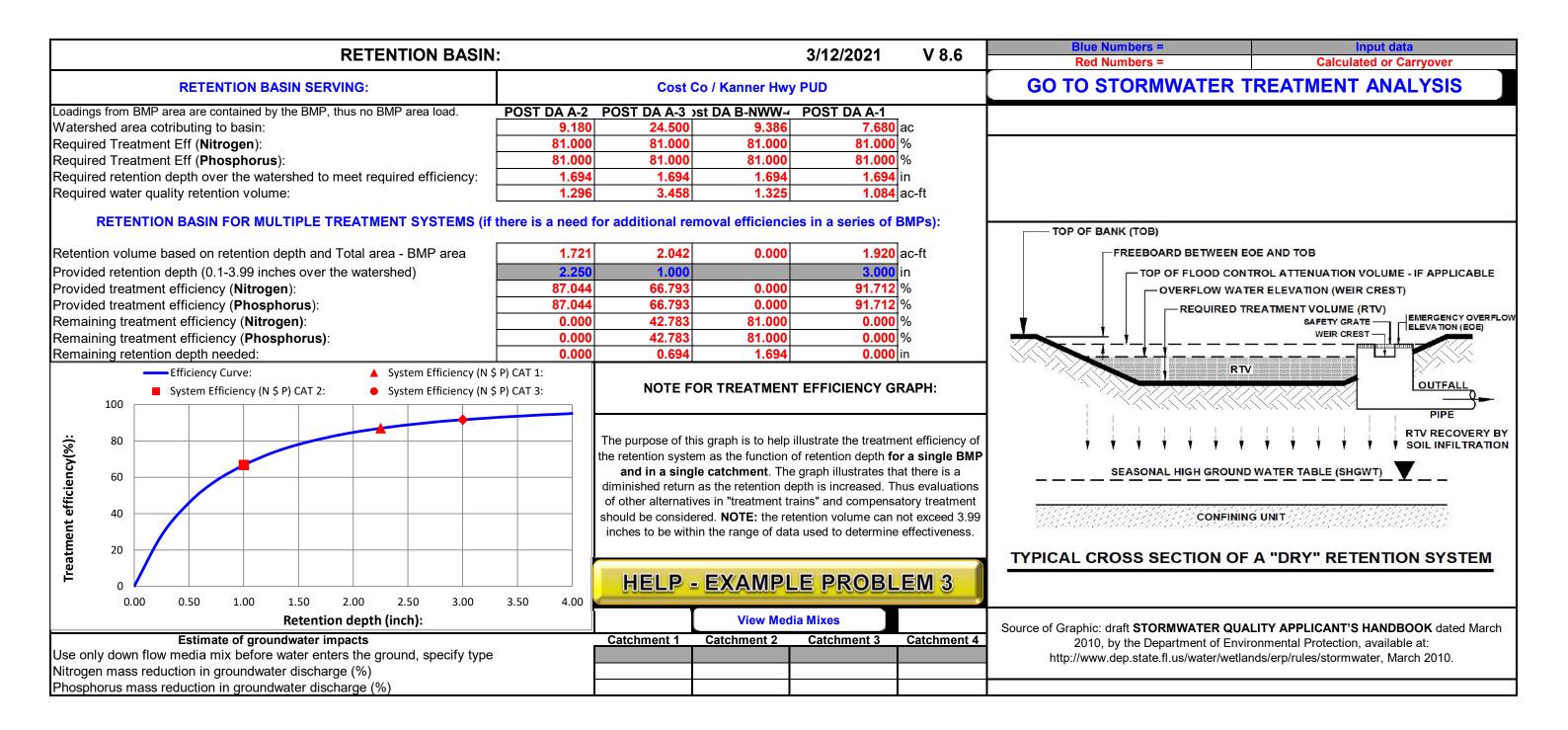

Respectfully, **ENGINEERING DESIGN & CONSTRUCTION, INC.**

David C. Baggett, P.E. Professional Engineer


Cc: Doug Fitzwater – Lucido and Associates


Z: EDC-2020/20-313 - Costco Stuart - Kanner HighwaylENGINEERINGIDocuments/Submittal Documents/Applications/2021-03-12/CoS_PUD_Site_Plan_1st_Response/2021-03-12_Revised_Tree_Mitigation_Stormwater_Letter.docx


GENERAL SITE INFORMATION:	V 8.6	GO TO INT	RODUC	CTION PAGE	3/12/2021	Blue Numbers = Red Numbers =
Select the appropriate Meteorol	NAME OF PROJEC	т	HEL			
appropriate Mean Annual Rainfall am analysis	iount and se	elect the type of	C	Cost Co / Kanner Hwy	/ PUD	VIEW 2
Meteorological Zone (Please use zo Mean Annual Rainfall (Please use rain Type of analysis: Treatment efficiency (N, P) (ex 80 70 (no decim	nfall map): nal points) use o	57.00 CLICK ON C Specifie	Zone 5 Inches ELL BELC	DW TO SELECT DW TO SELECT Il efficiency 81 %		VIEW MEAN A GO TO CHARA
removal efficien Select the STORMWATER TREATMENT ANA effectiveness of Best Ma	LYSIS Button b	• •		01 70	Model docum	nentation and example p
STORMWATER TREA Systems available for analysis: Retention Basin with option for calculatin Wet Detention Exfiltration Trench Pervious Pavement Stormwater Harvesting				www.stormwater	ucf.edu. The	e BMPTRAINS model. results from the exam current model results o model.
Biofiltration Greenroof Rainwater Harvesting Managed Aquatic Plants Detention Vegetated Natural Buffer Vegetated Filter Strip Swale Rain Garden Tree Well Lined reuse pond User Defined BMP	RESET INPUT FOR		OR	METHODOLOGY FOR CALCULATING I EFFICIENCY		
	STC	STORMWATER TREATMENT ANALYSIS			DLOGY FOR N SYSTEMS	
				METHODOLOGY FOR GREENROOF SYSTEMS		



WATERSHED CHAF	₹ACTERISTICS	V 8.6	GO TO STO	DRMWATER TREATMENT ANALYSIS	Blue Numbers = Red Numbers =	Input data Calculated
SELECT CATCHMENT	CONFIGURATION	3/12/2021		ELOW TO SELECT CONFIGURATION ed-4 Catchment-3 Series-Parallel	r	CATCHMENT C
For comingling, the off-site catchmer			n BMPs and	COMINGLING MULTI-LAND USE	GO TO GEN	NERAL SITE IN
must be used in hours as measured	by the time of concentration a	t a one inch/hour rai	n	COMINGEING MOLTI-LAND USE		
Delay [hrs] CATCH	IMENT NO.1 NAME:	POST D	A A-2	VIEW AVERAGE ANNUAL RUNOFF	OVERWRITE	DEFAULT CON
max delay = 15 hrs,	CLICK ON CELL	BELOW TO SEL	ECT	"C" Factor	PRE:	
Pre-development land use:	Undeveloped - Ruderal/U				EMC(N):	mg/L
with default EMCs	CLICK ON CELL	BELOW TO SEL	ECT	VIEW EMC & FLUCCS	EMC(P):	mg/L
Post-development land use:	Multi-Family:	TN=2.320 TP=0.520		GO TO GIS LANDUSE DATA		_
with default EMCs				GO TO GIS LANDOSE DATA	USE	DEFAULT CON
Total pre-development catchme			11.910 AC	· · · · ·		
Total post-development catchme			11.910 AC	Average annual pre rui		
Pre-development Non DCIA CN Pre-development DCIA percenta			77.00 0.00 %		inoff volume (note no B al Mass Loading - Nitro	
Post-development Non DCIA CI			88.00		al Mass Loading - Ning	
Post-development DCIA percent			74.50 %		ual Mass Loading - Nitr	
Estimated BMP Area (No loading			2.730 AC		ual Mass Loading - Pho	
CATCHMENT NO		POST D				
	CLICK ON CELL					
Pre-development land use:	Undeveloped - Wet Fla				PRE: EMC(N):	mg/L
with default EMCs	CLICK ON CELL				EMC(P):	mg/L
Post-development land use:	High-Intensity Comr					ling/L
with default EMCs						DEFAULT CON
Total pre-development catchme			27.130 AC			DEI AUET CON
Total post-development catching			27.130 AC	Average annual pre ru		
Pre-development Non DCIA CN Pre-development DCIA percenta			77.00 0.00 %	Average annual post ru	inott volume (note no B al Mass Loading - Nitro	
Post-development Non DCIA CI			88.00		al Mass Loading - Ning	
Post-development DCIA percent			74.50 %		ual Mass Loading - Nitr	
Estimated BMP Area (No loadin			2.630 AC	Post-development Ann		
CATCHMENT NO		Post DA B-	WW-4A	• · · · ·		RITE DEFAULT C
Г	CLICK ON CELL				PRE:	
Pre-development land use:		N=1.520 TP=0.200			EMC(N):	mg/L
with default EMCs	CLICK ON CELL		ECT		EMC(P):	mg/L
Post-development land use:		N=1.520 TP=0.200				
with default EMCs						DEFAULT CON
Total pre-development catchme			9.386 AC			DEFAULT CON
Total post-development catchme	5		9.386 AC	Average annual pre ru		
Pre-development Non DCIA CN			80.00	Average annual post ru		
Pre-development DCIA percenta			<u>68.08</u> %		al Mass Loading - Nitro	
Post-development Non DCIA CN			80.00 68.08 %		al Mass Loading - Phos	
Post-development DCIA percent Estimated BMP Area (no loading			0.000 AC		ual Mass Loading - Nitr ual Mass Loading - Pho	
		DOST D		Post-development Ann		-
		POST D				RITE DEFAULT C
Dre development land use	CLICK ON CELL Undeveloped - Ruderal/U				PRE:	lma/l
Pre-development land use: with default EMCs	CLICK ON CELL				EMC(N): EMC(P):	mg/L mg/L
Post-development land use:		TN=2.320 TP=0.520				ling/L
with default EMCs						DEFAULT CON
Total pre-development catchme			9.950 AC			DEFAULT CON
Total post-development catching			9.950 AC	Average annual pre ru		
Pre-development Non DCIA CN			77.00	Average annual post ru		
Pre-development DCIA percenta Post-development Non DCIA CN			0.00 % 83.00		al Mass Loading - Nitro al Mass Loading - Pho s	
					a mass Luauny - FIIU	spiloius.
Post-development DCIA percent	tage:		61.40 %	Post-development Ann	ual Mass I oading - Nitr	'oden:

CATCHMENTS AND TREATMENT SURFACE DISCHARGE SUMMARY

CALCULATION METHODS:

1. The effectiveness of each BMP in a single catchment is converted to an equivalent capture volume.

2. Certain BMP treatment train combinations have not been evaluated and in practice they are at this time not used, an example is a greenroof following a tree well.

3. Wet detention is last when used in a single catchment with other BMPs, except when followed by filtration

	0	, ,	,			
PROJECT TITLE Cost Co / P			Cost Co / Kanner Hwy PUD			
	POST DA A-2	POST DA A-3	Post DA B-NWW-4A	POST DA A-1		
Name	Retention Basin	Retention Basin		Retention Basin		
Name	Wet Detention/ MAPs	Wet Detention/ MAPs	Wet Detention			
Name						
REVIEW, ONE C	OR MORE CATCHME	NT HAS BEEN SPEC	CIFIED WITHOUT A E	BMP		
Surface Water	Discharge Sumn	nary Performance	of Entire Waters	hed		
	ment-3 Series-Parallel		3/12/	2021		
Load (kg/yr)	105.40		BMPTRAINS MODEL			
Phosphorus Pre Load (kg/yr)		Treatment				
Nitrogen Post Load (kg/yr)Phosphorus Post Load (kg/yr)Target Load Reduction (N) %Target Load Reduction (P) %Target Discharge Load, N (kg/yr)Target Discharge Load, P (kg/yr)Provided Overall Efficiency, N (%):						
		-				
		Target for	\cap			
		TN MET	(1) — 2) —	→ 3 →		
		TP MET				
Provided Overall Efficiency, P (%):						
Discharged Load, N (kg/yr & lb/yr): 81.5		179.67		(4)→→		
Discharged Load, P (kg/yr & lb/yr):		15.97				
, P (Kg/yr & ID/yr):	7.25	10.07				
, Р (кg/yr & lb/yr): N (kg/yr & lb/yr):	341.28	751.70				
	Cost Co / F Name Name Name REVIEW, ONE C Surface Water J - Mixed-4 Catch Load (kg/yr) re Load (kg/yr) re Load (kg/yr) ost Load (kg/yr) eduction (N) % eduction (N) % eduction (P) % e Load, N (kg/yr) e Load, P (kg/yr) Efficiency, N (%): Efficiency, P (%): , N (kg/yr & lb/yr):	Cost Co / Kanner Hwy PUDPOST DA A-2NameRetention BasinNameWet Detention/ MAPsNameWet Detention/ MAPsNameSurface Water Discharge SummJ - Mixed-4 Catchment-3 Series-ParallelLoad (kg/yr)105.40re Load (kg/yr)9.85t Load (kg/yr)422.85ost Load (kg/yr)81eduction (N) %81eduction (P) %81e Load, N (kg/yr)13.61Efficiency, N (%):81Efficiency, P (%):90N (kg/yr & Ib/yr):81.57	Cost Co / Kanner Hwy PUDOptional IdentificationPOST DA A-2POST DA A-3NameRetention BasinRetention BasinNameWet Detention/ MAPsWet Detention/ MAPsNameWet Detention/ MAPsWet Detention/ MAPsNameWet Detention/ MAPsWet Detention/ MAPsREVIEW, ONE OR MORE CATCHMENT HAS BEEN SPECSurface Water Discharge Summary PerformanceJ - Mixed-4 Catchment-3 Series-ParallelLoad (kg/yr)105.40re Load (kg/yr)9.85ost Load (kg/yr)71.64eduction (N) %81e Load, N (kg/yr)80.34e Load, P (kg/yr)13.61Efficiency, N (%):81Efficiency, P (%):90N (kg/yr & lb/yr):81.57179.67	POST DA A-2POST DA A-3Post DA B-NWW-4ANameRetention BasinRetention BasinNameWet Detention/ MAPsWet Detention/ MAPsNameWet Detention/ MAPsWet Detention/ MAPsNameREVIEW, ONE OR MORE CATCHMENT HAS BEEN SPECIFIED WITHOUT A ESurface Water Discharge Summary Performance of Entire WatersJ - Mixed-4 Catchment-3 Series-Parallel3/12/Load (kg/yr)105.40re Load (kg/yr)9.85t Load (kg/yr)422.85ost Load (kg/yr)71.64eduction (N) %81e Load, N (kg/yr)80.34e Load, P (kg/yr)13.61Efficiency, N (%):81Efficiency, P (%):90, N (kg/yr & Ib/yr):81.57179.67		